The Microbiome: A New Lens for Human Disease

Matthew R Redinbo
University of North Carolina at Chapel Hill

Overview

• Human Microbiome Project
 1. Nasal Microbiota
 2. Pulmonary Microbiota
 3. Intestinal Microbiota

• Pharmaceutical Control of the Microbiome

Human Microbiome Project

• 242 healthy US adults
• Sampled 3x from 15-18 body sites
• 5,177 bacterial taxa via 16S rRNA sequencing
• 3.5 Tbp metagenomic sequencing data
• Assembled sequences for 800 bacterial reference strains

HMP Overarching Conclusions

• Skin: greatest bacterial diversity
• GI: greatest bacterial load
• Mucosa: highly specialized and complex commensal communities
 – Diversity typically associated with health
 – Lack of diversity (dysbiosis) associated with disease

Microbia and the Mucosa: Intimate Symbiosis
Nasal Microbiota & S. aureus

- Normal: Actinobacteria, Firmicutes
- Hospitalized: Decreased Actinobacteria, increased S. aureus, S. epidermidis
- S. aureus outcompetes S. epidermidis

Corynebacterium accolens & pseudodiptheriticum co-localized with S. aureus
- Assisted S. aureus growth in co-culture

Nasal Microbiota & Rhinosinusitis

- Same microbiota in normal and rhinosinusitis patients
- Hyerpactive immune responses in rhinosinusitis

- Decreased lactic acid bacteria and increase in Corynebacterium tuberulostearicaum in rhinosinusitis
 - Lactobacillus sakei decreased sinus infections by C. tuberulostearicaum

Lung Microbiota & Cystic Fibrosis

- CF associated with increased Haemophilus influenzae, S. aureus, Pseudomonas aeruginosa, Burkholderia cepacia, along with Prevotella, Streptococci, Rhothia, Viellonella
- Lower diversity, lower lung function

- Soil Burkholderia dolosa marker for CF outbreaks
 - Adaptive mutations mapped over 15+ years

AIR
microbiota
Lungs

Plasma

epithelial mucosa

0.018 m²

Nasal – Sinus

NASAL – SINUS

Lung

Plasma

epithelial mucosa

70-100 m²

LUNG

AIR

microbiota

LOWER

UPPER
Lung Microbiota & COPD

- COPD: increased *H. influenzae* and Proteobacteria after viral challenge
- Persists for >40 days post viral infection

Lung Microbiota & Asthma

- Farm children: more bacteria and bacterial diversity, less asthma
- Microbial diversity at key stages of development tunes immune tolerance
- Changing GI composition changes short-chain fatty acid metabolism, which is protective against allergic asthma
 - SCFA: more pulmonary DC to control allergic inflammation

NEJM (2011) 364: 701

GI Microbiota, Diet & Obesity

- Diet changes GI microbiota
- Reduced microbiota diversity, increased carbohydrate metabolism lead to obesity in one twin
- Early antibiotics change microbial diversity and fat mass in mice
- Competition in virulence and energy metabolism drive GI microbial pathogenesis

GI Microbiota & Atherosclerosis

- TMAO is risk marker for atherosclerosis and generated by choline, phosphatidylcholine metabolism and the GI microbiota
- L-carnitine from red meat metabolized by GI microbiota to TMAO
- TMAO may inhibit reverse cholesterol transport

NEJM (2013) 368: 1575
GI Microbiota, Crohn’s & UC

- Disruptions of innate and adaptive immunity linked to inflammatory Crohn’s and ulcerative colitis (and even colorectal cancer etiology)
- Microbiota “set the tone” for proper immunity in the GI
- *Bacteroides fragilis* produce specific α-galactosylceramide that agonizes nKT-cells
- Microbial signals keep GI-proximal immune cells in “good working order”

Cell Microbiol. (2014) 16: 1053

GI Microbiota & Drug Actions

- Digoxin inactivated by GI microbe *Eggerthella lenta*
- Anticancer CpG oligos and Pt drugs require GI microbiota to drive tumor-infiltrating myeloid-derived cells to deliver ROS
 Science (2013) 342: 967
- Anticancer cyclophosphamides required GI bacteria to infiltrate lymphoid tissue to stimulate immune cell attack
 Science (2013) 342: 971
- Irinotecan & NSAID toxicity...

GI Microbiota

FOOD

- Diet, Obesity
- Specific Gene Expression
- Pathogen Exclusion
- Altered Diversity

Drug Actions

- Altered Diversity
- Specific Enzymes
- Immune Activation
- Targeted Modulation

Neurological Disorders
- Diabetes
- Autoimmune
- Heart Disease
- Cancer
- Inflammation
- Drug Toxicity

GI Microbiota & Neurology

- 100s Species
- Millions Genes
- Trillions Cells

Pharmaceutical Targets

GI Microbiota & Carboxylesterases (CE)

- Alleviation of GI Toxicity Caused by Anticancer Drug Irinotecan
β-Glucuronidase

Human
- Large glucosaminoglycans
- Sly Syndrome
- Essential

Bacterial
- Small glucuronate ethers
- Sugar scavenging
- Non-essential

GOAL: Inhibit Bacterial β-Glucuronidases

![Diagram of GOAL: Inhibit Bacterial β-Glucuronidases](image)

- Potent
- Selective
- Non-Lethal

Novel Inhibitors by HTS

<table>
<thead>
<tr>
<th>Inhibitor</th>
<th>K_i (nM)</th>
<th>K_{IC50} (nM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>160 - 680</td>
<td>160 - 680</td>
</tr>
<tr>
<td>2</td>
<td>160 - 680</td>
<td>160 - 680</td>
</tr>
<tr>
<td>3</td>
<td>160 - 680</td>
<td>160 - 680</td>
</tr>
<tr>
<td>4</td>
<td>160 - 680</td>
<td>160 - 680</td>
</tr>
</tbody>
</table>

$K_i = 160 - 680$ nM

E. coli β-glucuronidase

2.3 Å resolution inhibitor 2 complex
2.4 Å resolution inhibitor 3 complex

Selective

GOAL: Inhibit Bacterial β-Glucuronidases

- Potent
- Selective
- Non-Lethal

Protection from CPT-11 Toxicity

- Bacterial β-Glucuronidase Inhibitor
- 10 μg 2 x Daily Oral Gavage

No Impact on CPT-11 Plasma PK

- Measured Concentration (ng/mL)
- Hours

Drug-Induced Toxicity

1. Anticancer Drug CPT-11
2. NSAIDs

NSAID Toxicity

- Diclofenac-glucuronide
- Anti-inflammatory efficacy
- Ulcers
- Small GI

Small Intestinal Toxicity

- Long-Term Human NSAID Users
 - 70% INFLAMMATION
 - INCREASED PERMEABILITY
 - MALABSORPTION
 - 40% ULCERS
 - 30% BLEEDING, ANEMIA
Alleviation of NSAID Toxicity?

Protection from Diclofenac Toxicity

Protection from Diclofenac Toxicity

No Impact on Diclofenac Plasma PK

Drug-Induced Toxicity

Pharmaceutical Microbiome Control
10/2/2015

Acknowledgements

Diet Wallace
Adam Roberts
James Ingle
Jeth Lalat
Likawa Kelly
Kristen Brender

Siddhar Mani
Mathew Vrokelinck
Urs Baseler
Amanda Lipsett
Kyle Sotto
Sam Peacock

Jan Ji
Stephen Frye
Sarah O’Neil
Bill Zamboni
Christian Johan
Mike Little

Rebecca Pollet
Sara Robinson
Bret Wallace
Bill Walton
Laurie Betts
Jenny Graf
Adair London

NIH, NSF
University Cancer Research Foundation
SymBiotics, Inc.